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Abstract—Machine intelligence systems have been increasingly
widely deployed in real-world circumstances, while the conven-
tional human-vision oriented video coding schemes are inefficient
to be embedded in large-scale systems and further support a wide
range of applications. There have been urgent demands for a new
generation of compression framework to efficiently encodes visual
data, where the compression and analytics for machine vision
and human perception can be jointly optimized. To this end, we
propose a novel visual compression framework to provide visual
contents with different granularity for both human and machine
vision tasks collaboratively. The proposed scalable compression
framework maintains the critical semantic information in a basic
layer, so that it is capable of supporting the accurate machine
vision analysis under a tight bit-rate constraint. It is scalable to
provide visual representations of different granularity to support
various kinds of tasks, including video reconstruction that serves
human vision examination. Experimental results on the human-
centered videos have demonstrated the promising functionality
of scalable visual coding with improved efficiency for high-
performance machine analysis and human perception.

Index Terms—Video Coding for Machines, Scalable Visual
Compression, Human-Centered Videos

I. INTRODUCTION

With the rise of the new generation of intelligent sys-
tems, i.e. Smart Cities and Internet of Things (IoT), the
bandwidth to support single or multiple machine vision tasks
should be taken into consideration when building a distributed
intelligent visual system. Existing visual systems rely on
video coding technologies originally designed for human vi-
sion e.g. MPEG-4 AVC/H.264 [1] and High Efficiency Video
Coding (HEVC) [2]. With the ever-widening deployment of
modern visual intelligence systems, an increasing portion of
video content are consumed by machine vision systems, e.g.,
traffic detection, and action analysis in surveillance videos.
Therefore, the efficient compression of video data with com-
pact visual features is expected to facilitate analytic tasks.

To facilitate machine analytics, a branch of visual data
coding methods compress the extracted features instead of
the original full pictures [3], e.g. SIFT [4] for image re-
trieval, skeleton sequences [5], facial landmark [6], segmen-
tation map [7], depth map [8], and vectorized edge map [9].
However, these methods are usually task-specific, and cannot
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reconstruct videos to handle a wide range of tasks including
human inspection. A possible failure due to the insufficiency
of the information may require a costy retransmission to
recover. Hence, the procedure of extracting the piece of key
information, namely, features, are expected to be general and
scalable. On one hand, general features are expected to meet
common requirements of a group of machine vision tasks; on
the other hand, scalable features are expected to connect the
video data representation of different granularities, targeting a
variety of machine and human vision tasks. Joint performance
and efficiency optimization over multiple tasks is actually
incurred in developing general and scalable features [10].

Previous visual compression methods handle each task-
specific data stream separately when dealing with multiple
tasks. They are limited in compression efficiency. There is a
lack of connection mechanism to explore the features of differ-
ent granularity from pixels to semantic features. To maximize
the performance of multiple analytics tasks, a generic visual
compression method including compressing frame pixels as
well as semantic features is crucial for human and machine
visions. Hence, joint compression and analytics need to bridge
the gap between low-level classical pixel-level redundancy
removal and high-level task-specific feature extraction.

To this end, we propose properties for a desirable coding
approach: 1) extracting and compressing compact features that
maintain the crucial semantic information, 2) providing coarse-
to-fine information for different levels of human or machine
vision multiple tasks, 3) optimizing features in multiple tasks
jointly and collaboratively. This is also aligned with the
collaborative compression and analytics paradigm in MPEG
standardization effort Video Coding for Machine (VCM) [11].

To efficiently facilitate the emerging distributed intelligent
systems, where the visual content can be consumed by both
machines and humans, we propose the semantic laddering
framework for machine-human collaborative coding. On one
hand, the stream of the abstract features is light-weighted and
low-cost to support efficient video analytics. A tight constraint
on the bit-rate does not hinder it from preserving the critical
semantics of the compressed representation. On the other hand,
the visual representation can be enriched in a scalable way
with fine-grained features.

As an initial attempt, we follow a lot of prior researches to
focus on human analytics, as these videos are closely related to
our daily life, and human actions convey rich information. In
this work, we propose to jointly optimize the compression and
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analytics for human action videos, and figure out a scalable
approach for multiple analytics tasks of different granularities
with minimal bit-rates. To achieve the scalability in bit-rates
while maintaining the critical semantic information for all bit-
rate ranges, we propose the learned laddering compression
model to utilize the information in a coarser representation
to reconstruct the finer ones.

II. PROPOSED METHOD

A. Feature Laddering Framework

As illustrated in Fig. 1, we explore the possibility of
machine-human collaborative visual compression on human-
centered videos, by proposing the feature laddering framework
that provides visual information in different granularities.

To preserve the vital semantic information compactly in
the videos, and at the same time provide the capacity to
reconstruct the full frames, the encoder should extract different
levels of representation. The framework is designed with three
layers. The basic layer maintains the most critical semantic
information in the visual content. The enrichment layer pro-
vides the structural information about the visual content, and
it can be propagated through time with the basic layer to
model dynamics. The basic layer and the enrichment layer
combine to provide the middle-level information for spatio-
temporal machine analytics. Finally, the visual layer encodes
the video based on the information in the first two layers and
reconstructs the visual content for human vision examination.

The compression framework is designed to benefit a multi-
task machine vision system from the following aspects:

• The basic layer preserves the vital semantic information,
so that even when the bit-rates are strictly limited, ma-
chine analysis performance is still maintained.

• For down-stream tasks that do not require high-entropy
redundant information, the proposed framework can
largely reduce the bit-rate consumption and therefore
improve the efficiency.

• The framework is scalable in bit-rates as it maintains the
capability to reconstruct the visual content based on the
already signaled information. Thus, manual examination
is also supported with efficiency.

For human-centered videos, we extract the pose as the basic
layer representation that keeps the most fundamental seman-
tic information. Poses are, at the same time, compact and
light-weight, thus it can be transmitted with high efficiency.
The basic layer representation is compressed with a lossless
compression scheme. It provides the fundamental features that
power a series of high-level action understanding tasks, with
high efficiency and low bit-rate consumption.

While poses facilitate many down-stream analytics, some
further in-depth machine vision analytics require pixel-level
information, e.g. semantic segmentation and human pars-
ing [12]. Thus, in the enrichment layer of the laddering
framework, the key frames are signaled to the decoder with an
intra-frame compression scheme. We observe that pixel-level
semantic information can be efficiently propagated from the

key frames to the rests with the guidance of the basic layer
representations, and it benefits the mid-level analysis.

Finally, the framework is designed to be capable of recon-
structing the pixels for human vision. This is important as
in most applications, the machine vision algorithms can not
provide absolutely confident predictions, and human interven-
tion is needed in the last round. To reduce the bit-rates in
video encoding, a compression model that utilizes the already-
encoded representations in previous layers is developed.

B. Learned Scalable Visual Compression

To meet the goal of the feature laddering framework,
we design the Alpha-Beta Flow model for human-centered
video compression. We follow the learned video compres-
sion paradigm in existing literature [13], [14] and further
make it end-to-end trainable inspired by the scale-space flow
model [15]. However, it is not an ideal solution to directly
apply the scale-space flow model in this circumstance. The
actions of human bodies in human-centered videos are more
random than the common motions in other natural videos,
e.g. camera motion, affine motion. The scale-space flow model
conducts the prediction with the following sampling function,

x′ := Scale-Space-Warp(x, g), (1)
s.t. x′[x, y] = X[x+ gx[x, y], y + gy[x, y], gz[x, y]]

where the prediction x is sampled via flow g from a stack of
reference frames X. Each frame in the stack is a differently
blurred version of the previously reconstructed frame. It works
well for natural motions, while it may face the problem of
missing information when an object suddenly moves in or
moves out, which is common in human action videos, as the
actions are more random. Thus, we modify sampling function
with the proposed Alpha-Beta flow model, formulated as,

x′ := Alpha-Beta-Warp(x, g, α, β), (2)
s.t. x′[x, y] = X[x+ gx[x, y], y + gy[x, y]] · α+ β,

g, α, β = F(x,y, px, py; θF ),

where we generate a flow map g, coefficients α and β with
a parametric function F . The Alpha-Beta flow change the
sampling hyper space from the original scale-space manifold,
i.e. stack of blurred images, to the intensity-space manifold,
where the parametric function F decides how confident it is
to predict the pixel intensity at the current position by a space
flow, and it tunes α to show the confidence. For area that an
object pops out or fade away, the model lower its confidence to
allow the static prediction β to compensate for the prediction.

With the Alpha-Beta Flow model, we build up the learned
video compression scheme to make up the enrichment layer
and the visual layer in the laddering framework. The overall
architecture of the model is shown in Fig. 2. The hyperprior
based encoder follows the design in [16]. It generates a bit-
stream BI and the reconstructed frame decoded from the
bit-stream. The enrichment layer is implemented with the
intra encoder, where each frame is independently compressed
and decompressed. The visual layer involves the P-Reference
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Fig. 1: Feature laddering framework for semantic preserving collaborative visual compression. In applications, the encoder
conducts a prior analysis after the video is captured, and it encodes the representations into three layers. The clients request
bit-streams with different granularities on their demands, and decode the bit-stream to support various down-stream tasks.

encoder with the Alpha-Beta flow model. It includes a flow
encoder to generate the Alpha-Beta flow and the corresponding
bit-stream BF , and consequently makes the predictions. The
pose-guided Alpha-Beta flow encoder takes two streams of
inputs. The first stream is composed of the reference frame
(previously encoded and decoded), the reference pose (em-
beded in the basic layer of the bit-stream), the target frame
(to-be-encoded) and the target pose (also embeded in the
basic layer). As the target frame has been embeded in this
stream, it requires some bit-rates to signal the information.
Meanwhile, the other stream contains only the already decoded
representations, i.e. the reference frame, reference pose and the
target pose. Thus, we do not quantize the latent representation
extracted from the second stream and no extra bits should be
encoded. The two streams are concatenated in the decoder
to finally generate the Alpha-Beta flow for the prediction.
We further include a residual encoder here to compensate
for the prediction and generates the P-reconstructions with a
compensating residual bit-stream BC .

The pose-guided video compression model is end-to-end
trained with the rate-distortion optimization, as,

argmin
θI ,θF ,θR

R+ λD, (3)

R = RI0 +
N−1∑
i=1

(RFi
+RCi

) , D =
N−1∑
i=0

d (x̂i,xi) ,

where θI , θF , θR correspond to trainable parameters for the
intra coder, flow coder and the residual coder, respectively. R
denotes the information entropy of the latent representations
and D measures the distortion w.r.t. original frames and the
reconstructions. In the experiments we utilize Mean Squared
Error (MSE) as the distortion function d.

C. Supporting Down-Stream Tasks

In this work, we explore two representative down-stream
machine vision tasks based on the proposed framework, i.e.
action recognition and human parsing. For action recognition,
the losslessly compressed pose sequences, a.k.a. the basic
layer, is utilized to conduct the analysis. To conduct accurate
parsing, we adopt an image-to-image translation framework
with the ResNet backbone consisting of 9 blocks.

To generate the parsing result for a specific frame i, the ref-
erence input to the network is organized as the concatenation
of the enrichment layer representations, i.e. the reconstructed

I-Frame Reconstruction

Target & Ref.
Alpha-Beta Flow

Prediction

P-Frame

— +
Reconstruction

Pose-Guided
Alpha-Beta Flow 

Encoder

Hyperprior-Based 
Encoder

Quantized Latent 
Representation

Latent 
Representation

Reference

Pose Guidance

Intra Frame Encoder

P-Reference Encoder

Fig. 2: Pose-guided video compression model based on an
Alpha-Beta flow encoder.

key frame x̂i−k that corresponds to the frame existing at
the previous k-th time step, the corresponding parsing result
ŷi−k, and the corresponding pose p̂i−k. Under the condition of
the reference input, the network conducts an image-to-image
translation, from the current pose p̂i to the target output ŷi.
This can be formulated as,

ŷi = F(p̂i|x̂i−k, ŷi−k, p̂i−k; θ), (4)

where θ corresponds to the trainable parameters. The param-
eters are trained with the pixel-wise cross-entropy loss as,

argmin
θ

∑
1≤i≤N,1≤j≤M

LCE(yi,j , ŷi,j), (5)

where yi,j is the one-hot encoding of the ground truth parsing
label at the position (i, j) for a frame of N ×M resolution,
while ŷi,j is the prediction by the translation network.

As not all the pixels are transmitted, the proposed method
largely reduces the bit-rate consumption for producing accu-
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TABLE I: Action recognition accuracy on PKU-MMD. Orig-
inal refers to the frames before further lossy compression.
HEVC stands for frames downsampled to 64×64, and encoded
by HEVC (QP=51). We count the bytes for the bit-streams and
average it over the frames to show the bit-rates.

Training Testing Acc. Bytes per Frame

Original Original 80.11% 124.21 KB

HEVC HEVC 26.14%
39.22 BOriginal HEVC 11.93%

Original + HEVC HEVC 25.57%

Skeleton Skeleton 75.11% 6.623 B

TABLE II: Evaluation of human parsing on PKU-MMD.
HEVC refers to parsing results extracted from the frames
encoded with HEVC (QP=51). 1st Frame (respectively I-
Frames) refers to the parsing maps extracted from the poses
and the first frame (respectively the nearest key frame).

Metric Labels HEVC 1st Frame I-Frames

Acc. Average 52.32% 57.94% 63.17%

IoU Average 37.49% 50.93% 54.91%

Bytes per Frame 240.19 24.29 121.40

rate action recognition results and the parsing maps, thus to
support high-efficiency machine intelligence systems.

III. EXPERIMENTAL RESULTS

A. Experimental Settings

In the experiments, we evaluate the capability of the
framework to power machine vision tasks and human visual
examination at different ranges of bit-rates. We conduct the
experiments on high-quality human-centered video datasets,
i.e. PKU Multi-Modal Dataset (PKU-MMD) [17].

B. Machine Vision Analysis

1) Action Recognition: To show the general potential per-
formance that the framework can deliver on machine vision
tasks, which usually requires the preservation of high-level
semantics, we evaluate the action recognition algorithms on
the compressed representation of the videos.

For benchmarking, we adopt the algorithm settings in [17],
where we apply the Temporal Segment Network (TSN) [18]
for action recognition and we adopt the three-layer bi-
directional LSTM network for action recognition on skeletons.
The comparison of the performances is shown in Table I.
Though with the original frames, the down-stream action
recognition algorithm achieves the highest performance, it
requires a large bandwidth to transmit the frames. When
the bandwidth is highly constrained, transmitting the original
frames becomes difficult. Compared to HEVC, the proposed
framework signals compressed skeleton sequences as the
basic-layer representation, and it achieves high performance
in action recognition with a much lower bit-rate.

2) Human Parsing: There are some machine vision tasks
relying on finer information about the video. In this ex-
periment, we show that the proposed method also facilitate
such kind of machine vision algorithms. We evaluate the

0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016
Bit-rate (bpp)

26

28

30

32

34

PS
NR

 (d
B)

Ours
HEVC

Fig. 3: R-D performance evaluation on PKU-MMD.

human parsing performance on the compressed representation
of PKU-MMD. The semantic labels are generated by LIP
human parsing algorithm [12]. The results are marked as
the ground truth of the parsing results. We then compared
the parsing results provided by the proposed framework and
HEVC respectively, under the constraints of bandwidth.

The parsing results are generated by the image translation
framework. The benchmarking results are shown in Table II.
As shown, while HEVC consumes more bit-rates than the pro-
posed method, it does not provide better down-stream parsing
results. Utilizing a denser sampling of the reference frames
further improves the prediction results while still keeping the
bit-rates low.

C. Human Vision Analysis

In this experiment, we evaluate the rate-distortion efficiency
of the proposed model, when human examination is required.
We train multiple models with the proposed network with
different values of λ, to achieve different ranges of bit-rates.
Specifically, for the evaluation on PKU-MMD, we select λ ∈
{10−5, 10−4, 10−3}. We set the number of frames between
two I-Frames (a.k.a., Group of Pictures, GOP) to 16 in the
evaluations for both the proposed model and HEVC, and we
adopt the Low-Delay-P coding configurations. We evaluate
video-level PSNR on the reconstructed frames to compare
visual fidelity. For a video sequence, the MSE for all the
pixels, with all three channels (i.e. R, G, B), in all the frames,
is calculated and we compute PSNR from the MSE value.
We average the bit-per-pixel (bpp) and PSNR over all the
videos, and the rate-distortion curve is shown in Fig. 3. The
proposed method achieves better reconstruction quality than
HEVC in human examination tasks, and the gain in quality
is more significant at lower ranges of bit-rate, where the pose
sequences provide useful guidance information.

IV. CONCLUSION

In this paper, we consider the coding efficiency problem
with the bandwidth constraint in machine intelligence systems,
and we find that a wide variety of machine vision tasks
can be supported efficiently solely by very compact feature
representations. Existing visual coding schemes might not
maintain the semantic information well at low bit-rates, so
they are inefficent for machine vision systems. To address
the problem, we propose a laddering framework for machine-
human collaborative coding to well support high-accuracy
machine vision tasks with lower bit-rate consumption. The
proposed model can also be scaled up to meet the need of
human examination, and reduce the cost of re-transmission in
a machine vision system.
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